Electrak® HD Linear Actuator with Flexible Onboard Controls, Superior Performance and **Unmatched Environmental Protection** **NEW!** Programmable limit switches and signal-follower option now available # Electrak® HD — Superior Performance Linear Actuator Higher power, longer stroke, onboard controls with optional CANopen or SAE J1939 CAN bus and unmatched environmental protection The Electrak HD is a new electric linear actuator platform with onboard electronics, which can eliminate the need for standalone controls. Higher power opens a new, wider range of hydraulic applications to electric conversion. And it meets the most extreme OEM component environmental acceptance tests, including IP69K. #### **Industry-Leading, Onboard Electronics** The new Electrak Modular Control System (EMCS) is the foundation for the best onboard controls currently available in electric linear actuators and includes optional, built-in CANopen and SAE J1939 CAN bus support. The feature-rich modular design for all control and feedback options is simple to use and built within one compact housing. It improves controllability, saves space and reduces installation time and total cost. - A wide range of voltage options available, including 12, 24 and 48 Vdc - Built-in CANopen and SAE J1939 CAN bus options enhance controllability, can eliminate individual controls and simplifies OEM machine design - Electronic trip point calibration ensures consistent overload protection - Constant monitoring of critical parameters such as end-of-stroke, voltage, current and temperature is standard on all HD actuators - Built-in dynamic braking reduces coast at the end of stroke, improving repeatability - Optional low-level switching with automatic sleep mode reduces footprint, lowers costs and boosts circuit isolation 2 - Optional end-of-stroke indication output for customer use, such as interlocks - Optional synchronization feature allows for motion integration of two or more actuators #### **Superior Performance** Higher power and longer stroke lengths enable Electrak HD to tackle applications outside the range of other electric linear actuators. - Higher load ranges up to 16 kN (3600 lbs.) are ideal for hydraulic-to-electric conversion applications - Stroke lengths up to 1 m (39 in.) for models up to 10 kN / 500 mm (20 in.) for 16 kN - Efficient actuator design, including a high-quality ball screw, reduces current draw by up to 20% #### **Unrivaled Environmental Protection** Electrak HD is tested to meet and exceed the toughest OEM mechanical and electronic component acceptance tests on the market today. - IP69K (static), IP67 (static) and IP66 (dynamic) ratings prove Electrak HD can withstand the harshest environments - Capable of operating in a wide temperature range from -40°C to +85°C (-40°F to +185°F) - Salt spray tested for 500 hours - CE, RoHS and REACH (EU) compliant - Rated for IP-X6 (dynamic) during water splash at +10°C (+50°F) and an equalized actuator temperature of +85°C (+185°F) #### **Additional Standard Features** - Integrated manual override - Standard anti-rotation actuation - Integrated thermal overload protection - Load lock in case of ball nut overload failure - Flexible front and rear clevis options ### How Thomson Built a World-Class Linear Actuator - 1. Start with the proven, rugged Electrak® electric linear actuator. - 2. Add state-of-the-art onboard controls, feedback, CANopen or SAE J1939 CAN bus and eliminate the need for standalone controls. - 3. Boost the power, increase stroke lengths and reduce current draw. - 4. Design it all into a more compact envelope with the best environmental protections on the market today. #### **SUPERIOR PERFORMANCE** Higher power and longer stroke lengths enable Electrak HD to tackle applications outside the range of other electric linear actuators. - 4 Modular Cabling - 5 Standard Anti-Rotation Feature - 6 Static Load Holding Brake - **7** Robust Zinc Housing - 8 Large Variety of Adapters - 9 Integrated Manual Override - 10 High-Efficiency Ball Screw Assembly #### **UNRIVALED ENVIRONMENTAL PROTECTION** Electrak HD is tested to meet and exceed the toughest OEM mechanical and electronic component acceptance tests on the market today. - 11 IP69K/IP67/IP66 Protection Class - 14 Large Operating Temperature Range - 12 Stainless Steel Extension Tube - 15 Hard-Coat Anodized Aluminum Cover Tube - 13 Salt Spray Tested for 500 Hours ### Smart Onboard Electronics for Easier Control Thomson's Electrak Modular Control System (EMCS) is built into every HD actuator and serves as the foundation for the best onboard controls currently available on the market, including optional CANopen and SAE J1939 CAN bus. #### **Industry-Leading Onboard Electronics** EMCS is the culmination of decades of global design and application engineering in some of the toughest environments. # Electronic Monitoring Package – Standard on all Electrak HD Actuators Safety comes first. Each HD electric linear actuator is equipped with the Electronic Monitoring Package, which will constantly monitor critical parameters and take appropriate action as needed. Each unit will reset automatically when conditions return to normal, allowing for operation to continue. # A Wide Range of Optional Control Features Within the Same Compact Envelope Optional control functions can eliminate the need for external controls, saving design and installation time, as well as space and installed cost. A generous selection of control configurations can tailor HD to fit a wide breadth of heavy duty applications. The available control configurations are described on the next page and more details, including wiring diagrams for each option, begin on page 24. #### Electronic Monitoring Package Standard Features #### **Current Monitoring** A critical safety feature that shuts down the actuator on overload and eliminates the need for the traditional mechanical clutch. #### **Voltage and Temperature Monitoring** Continuous monitoring protects the actuator by preventing motion if outside normal ranges. #### **Temperature Compensation** Boosts productivity by enabling normal operation at lower temperatures without nuisance tripping. #### **Load Trip Point Calibration** Each Electrak HD actuator is individually calibrated at assembly to ensure a repeatable overload trip point. #### **Internal End-of-Stroke Limit Switches** Built in to each HD actuator, they ensure smooth, repeatable operation and protect both connected equipment and the actuator. #### **End-of-Stroke Dynamic Braking** Enables quick, end-of-stroke stops for more repeatable movements when loads would traditionally cause coasting. #### **Optional Control Features** #### **CANopen CAN Bus** Allows plug and play connectivity on your already established CANopen network. #### **SAE J1939 CAN Bus** Allows plug and play connectivity on your already established SAE J1939 network. #### **Synchronization** Enables motion integration of two or more actuators. #### **Low-Level Switching** Improves safety, saves energy with an auto sleep feature and simplifies design by using low current (< 22 mA) signals. Its soft start improves the smoothness of the move profile. #### **Programmable Limit Switches** Makes it possible to set mid stroke extend and retract software travel limits. #### **Mid-Stroke Dynamic Braking** Standard with the low-level switching or CAN bus options. Reduces coast, improving repeatability. #### **Limit Switch Output** Confirms successful operation by indicating the actuator is fully extended or retracted. #### **Analog Position Output** A high-quality potentiometer with essentially infinite resolution and low noise provides a voltage signal for position and direction feedback. #### **Digital Position Output** An encoder provides a single-channel pulse train for position and speed feedback, which can be used to allow synchronization via customer control. #### **Signal-Follower** Allows the actuator extension tube position to be controlled from an external signal from a potentiometer or other voltage control source. #### **Control Option Combinations** | Code | Control Combination Possibilities | Code | Control Combination Possibilities | |------|---|------|---| | EXX | Electric Monitoring Package only (1) | LXX | EXX + Low-Level Signal Motor Switching (2) | | ELX | EXX + End-of-Stroke Indication Output (1) | LLX | EXX + LXX + End-of-Stroke Indication Output (2) | | EXP | EXX + Analog Position Output (1) | LXP | EXX + LXX + Analog Position Output (2) | | EXD | EXX + Digital Position Output (1) | LPS | EXX + LXX + Programmable Limit Switches + Signal-Follower (1) | | ELP | ELX + Analog Position Output (1) | CNO | SAE J1939 CAN Bus Control + Open-Loop Speed Control (2) | | ELD | ELX + Digital Position Output (1) | C00 | CANopen CAN Bus Control + Open-Loop Speed Control (2) | | | | SYN | Synchronization Option (2) | ⁽¹⁾ Available for 12 and 24 Vdc models only ⁽²⁾ Available for 12, 24 and 48 Vdc models ### Bus Communication — The Future of Actuator Control Controlling an actuator over a network bus opens the door to breakthrough opportunities in machine design. More control, monitoring and feedback options can eliminate the need for separate controls. These options will also simplify design, diagnostic feedback and installation while reducing installed costs. The built-in CAN bus option makes it possible to communicate with Electrak® HD electric linear actuators over a simple two-wire network. #### **CAN Bus in Practice** Electrak HD uses CANopen and SAE J1939 CAN bus, well-known, mature bus standards widely used in the material handling, construction and agriculture industries. Up to 8 Electrak HD actuators can be connected to the same controller and to other CAN bus controls in the network. Complex, real-time interactions between multiple actuators and related systems are now much simpler to
monitor and control. #### **Application Examples** - Check position of doors and hatches and take action depending on the situation - Monitor the temperature, overload condition or voltage variations, then take action across the network as needed. Examples: start ventilation, reduce speed or stop an operation. - Confirm when position or other criteria are met - Synchronize the motion of several actuators #### **Benefits of CAN Bus Controls** - Better controllability more complex, precisely controlled motion - Improved safety feedback in real-time with all operations verified - Shorter design cycles and installation time – CAN bus means minimal wiring, no extra control boxes and quick connection to existing networks - Greater flexibility use the same actuator with minor program edits for multiple applications instead of designing for unique actuators and controls for every type of application - Reduced costs all of the above will lead to reduced design, component, installation, operation and maintenance costs ### Control Architecture With and Without CAN Bus #### **System Without CAN Bus** - A power (1) is distributed to each device - A main control (2) system communicates separately with an individual control (3) box connected to an actuator. Each instance may require individual design, configuration, wiring and installation. - Other equipment (4) that needs to be controlled or integrated with the actuators requires separate controls with more design and configuration required #### **System With CAN Bus** - A control system and actuators with CAN bus can communicate directly to each other. Adding additional, separately configured actuators is fast and easy. Only the power and a two-wire bus cable are needed to extend the network. - Any other equipment with CAN bus can be connected to the bus and communicate directly - The result is a less complex system to design, better performance and controllability, and reduced installation time and overall cost ### Add Even More Control and Power with the Synchronization Option Electrak HD's control features undergo thorough testing at Thomson to ensure your machines are prepared for countless application challenges — both expected and unexpected. With the new synchronization option, machine designers are now able to easily conquer not only heavier loads but the sometimes unforeseen obstacle of actuating uneven loads as well. Not all applications present machine designers with ideal conditions in which to work. For example, a load requiring actuation may be much heavier on one end, which could lead to potential damage to the machine or its components if handled improperly. To address situations such as this, the synchronization feature allows two or more Electrak HD units to share and evenly distribute a load. This capability, which can be utilized with the simple flip of a switch, opens up new application opportunities where a single HD actuator cannot handle the load. At the same time, the use of multiple, heavy duty HD actuators allows users to electrify additional movement with their loads compared to hydraulic solutions. #### **Benefits of Synchronization** - No more "bouncing." When multiple actuators with synchronization are installed, designers can take advantage of a more stable and potentially quicker lift, no additional guides, and improved handling of uneven loads. - Installation is simple and lowers the complexity of wiring up the system since the actuators have integrated controls for the synchronization feature (as opposed to an external sync control). Each Electrak HD can push or pull up to its maximum dynamic load capacity in an effort to automate an uneven load in a synchronized fashion. ### **WHY SYNCHRONIZE?** - Handle uneven or awkward loads - Lift heavier loads - Integrate movement of multiple end points - Eliminate mechanical linkage ## Synchronization Applications #### **Door/Hatch Lifts** Utilizing synchronization for mobile lifting platforms on vehicles provides a robust, reliable solution without the complexity and maintenance requirements of a traditional hydraulic solution. #### **Assembly Stations** Placing the Electrak HD with synchronization into your ergonomic applications ensures a stable, effective lift for off-center or awkward loads. #### **Solar Panels** The Electrak HD is an industrial solution that can handle heavy loads – such as large solar panels – in rugged installations. These heavier loads, which would typically require structural support and larger actuation solutions, can be easily lifted with multiple HD actuators in sync. #### **Automated Guided Vehicles** Applications using automation can benefit from internal condition monitoring with every HD actuator. This keeps the actuators running within rated specification and shuts them down if temperatures rise, loads are exceeded or input voltage is insufficient. # Electrak® HD — Smarter, Stronger, Longer In addition to advanced control features, the Electrak HD offers 50% higher load capacity and 60% longer stroke lengths than previous designs, and is faster than the competition at comparable loads. This new, extended envelope of operation also opens a larger range of hydraulic-to-electric application conversions. in cable management, an integrated connector and a manual override feature on every actuator. Building on the capabilities of the Electrak 10, the workhorse of electric actuators for decades, the Electrak HD offers onboard controls, higher load capacity (up to 16 kN [3600 lbs.]), longer strokes (up to 1 m [39 in.] / 500 mm [20 in.] for 16 kN) and higher speeds. # Ready to Work in Extreme Environments The Electrak HD is well suited for heavy duty, industrial applications, including conversion of hydraulic to electric actuation. It shows its mettle when used under the harshest conditions. Each HD actuator is designed to meet and exceed the toughest OEM mechanical and electrical components tests, including IP69K. omsonlinear.com/hd 13 ### Accelerated Trend Toward Electric Conversions Once dominated by manual, pneumatic and hydraulic systems, mobile on- and offhighway equipment is increasingly equipped with electric actuators to automate many tasks. Electric linear actuators are easier to integrate with modern computerbased control systems and are precisely controlled. They consume a smaller footprint and are cleaner than both pneumatic and hydraulic systems. ### Easier Installation, Superior Control and Less Complexity #### **Simpler, Smaller and Faster to Install** - Electric actuation requires fewer components than hydraulic or pneumatic systems for faster and easier installation - Component costs are less than in comparable hydraulic or pneumatic systems - A smaller footprint simplifies and speeds design #### **Easier Control, Better Accuracy** - All-electric components mean easier integration, fewer control components and less complexity - Electric actuators react quicker and more predictably, and will not drift when power is off #### **Lower Energy Costs** - Electric motors are intrinsically more efficient than pneumatic or hydraulic motors - No need to up-size the existing system to account for potential parasitic power draw - No power required to hold load-reducing power consumption #### **Less Maintenance** - No hydraulic pumps, valves or hoses means reduced downtime with fewer parts to service and replace - Self-contained units with smart, onboard electronics require zero maintenance, adding design flexibility in component placement - Electric actuation eliminates the cost and hassle associated with fluid maintenance #### **Cleaner, Quieter, Healthier Environment** - No pumps, fluids, chemicals or solvents translates into a cleaner and quieter workspace - A compact design requires fewer materials to be used in production - Regional manufacturing and distribution plants minimize freight and reduce the carbon footprint ### Improving Machine Design with Electric Actuation These applications illustrate how the Electrak® HD can deliver huge benefits over pneumatic and hydraulic mechanisms, including reduced design, installation and operation costs, while improving controllability, safety and productivity. #### **Single-User Maintenance and Repair** Electric linear actuators enable a single maintenance or repair technician to access the engine compartment quickly and safely. #### **Quick-Attach** Quick-attach actuators allow the operator to change implements on the loader or skid steer without leaving the seat for improved productivity and safety. #### **Utility Vehicles** Garden, construction and service vehicles require rugged, efficiently controlled performance. The environmental protection (IP69K), high load capabilities and CAN bus communication provide that performance. #### **Roadwork and Construction Site Equipment** Long stroke, protection against harsh environments and high load rating (including high shock loading for wind shear) make the Electrak HD a great fit for this roadside construction sign. #### **Railroad Equipment** Railroad equipment experiences the toughest conditions. Whether it is to open and close a gravity bin or to control a pantograph, the Electrak HD actuator will perform effectively despite harsh weather, heavy vibrations or high-pressure washing. #### **Emergency and Rescue Vehicles** The deployment of lighting on emergency vehicles demands the most reliable operation. Electrak HD is easily controlled, has a built-in manual override and operates reliably in all weather to help emergency responders perform their jobs safely. #### **Logistic Systems** The Electrak HD, with its built-in CAN bus capabilities, makes it easy to build intelligent logistic systems such as the material handling train shown here. #### **Switch Gears** Electrical switch gears are often placed in remote locations. It is critical that power switching is executed and confirmed without fail. Electrak HD is ideal for this task in arctic to high-temperature
conditions. # Electrak® HD Technical Features Onboard electronics eliminate the need for standalone controls. Higher power opens a wider range of hydraulic-to-electric conversions. Meets the most extreme OEM component environmental acceptance tests. | General Specifications | | | | | | | | |----------------------------|---------------------------------------|--|--|--|--|--|--| | Parameter | Electrak HD | | | | | | | | Screw type | ball | | | | | | | | Nut type | load lock ball nut | | | | | | | | Manual override | yes | | | | | | | | Anti-rotation | yes | | | | | | | | Dynamic braking | yes (1) | | | | | | | | Static load holding brake | yes | | | | | | | | End-of-stroke protection | internal end-of-stroke limit switches | | | | | | | | Overload protection | yes | | | | | | | | Temperature monitoring | yes | | | | | | | | Temperature compensation | yes | | | | | | | | Voltage monitoring | yes | | | | | | | | Electrical connections (2) | cable(s) with flying leads | | | | | | | | Compliance | CE | | | | | | | ⁽¹⁾ Dynamic braking is included at the ends of stroke for all Electrak HD actuators. Dynamic braking offered throughout the entire stroke length only on low-level switching and SAE J1939 options. | Optional Features | | | | | | | | |--------------------|------------------------------------|--|--|--|--|--|--| | Parameter | Electrak HD | | | | | | | | Mechanical options | Variety of front and rear adapters | | | | | | | | | Alternative adapter orientation | | | | | | | | Control options | End-of-stroke output | | | | | | | | (see page 24) | Analog position feedback | | | | | | | | | Digital position feedback | | | | | | | | | Programmable limit switches | | | | | | | | | Signal-follower | | | | | | | | | Low-level signal motor switching | | | | | | | | | CANopen CAN bus | | | | | | | | | SAE J1939 CAN bus | | | | | | | | | Synchronization | | | | | | | | Accessories | | |-------------|--------------------------------------| | Parameter | Electrak HD | | Mechanical | Rod end front adapter | | Electrical | External slot-mounted limit switches | #### **Cable Definitions** The drawing shows the cables exiting the cable slots at the end of the actuator housing, which is the shipping position. The user can adjust the exit point to be anywhere between the connector (1) in the front of the housing and the end of the cable slots. ⁽²⁾ There are one or two cables depending on the control option used. The cable(s) enters the actuator via a connector. The replacement of an actuator can be completed by unplugging the old actuator and plugging in the new one. # Electrak HD Technical Specifications | Mechanical Specifications | | | | | | | | | |---|---------------|--|--|--|--|--|--|--| | Parameter | | Electrak HD | | | | | | | | Max. static load (1) | [kN (lbs)] | 18 (4050) | | | | | | | | Max. dynamic load (Fx) HDxx-B017 HDxx-B026 HDxx-B045 HDxx-B068 HDxx-B100 HDxx-B160 | [kN (lbs)] | 1.7 (382)
2.6 (585)
4.5 (1012)
6.8 (1529)
10 (2248)
16 (3584) | | | | | | | | Speed @ no load/max. load (2)
HDxx-B017
HDxx-B026
HDxx-B045
HDxx-B068
HDxx-B100
HDxx-B160 | [mm/s (in/s)] | 71/58 (2.8/2.28)
40/32 (1.6/1.3)
24/19 (0.94/0.75)
18/14 (0.71/0.55)
11/9 (0.43/0.35)
7/5 (0.27/0.21) | | | | | | | | Min. ordering stroke (S) length | [mm] | 100 | | | | | | | | Max. ordering stroke (S) length (3) | [mm] | 1000 | | | | | | | | Ordering stroke length increments | [mm] | 50 | | | | | | | | Operating temperature limits | [°C (F)] | -40-85 (-40-185) | | | | | | | | Full load duty cycle @ 25 °C (77 °F) | [%] | 25 ⁽⁴⁾ | | | | | | | | End play, maximum | [mm (in)] | 1.2 (0.047) | | | | | | | | Restraining torque | [Nm (lbs)] | 0 | | | | | | | | Protection class - static | | IP67 / IP69K | | | | | | | | Protection class - dynamic | | IP66 | | | | | | | | Salt spray resistance | [h] | 500 | | | | | | | ¹ Max. static load at fully retracted stroke. | Electrical Specification | S | | |--|------------|--| | Parameter | | Electrak HD | | Available input voltages (5) | [Vdc] | 12, 24, 48 | | Input voltage tolerance
HD12 (12 Vdc input voltage)
HD24 (24 Vdc input voltage)
HD48 (48 Vdc input voltage) | [Vdc] | 9 - 16
18 - 32
36 - 64 | | Current draw @ no load/max. load HD12-B017 HD24-B017 HD48-B017 HD12-B026 HD24-B026 HD12-B045 HD24-B045 HD24-B045 HD12-B068 HD12-B068 HD12-B100 HD12-B100 HD12-B100 HD12-B160 HD12-B160 HD12-B160 HD24-B160 HD24-B160 HD48-B160 | [A] | 3/18 1.5/9 0.75/4.5 3/18 1.5/9 0.75/4.5 3/18 1.5/9 0.75/4.5 3/20 1.5/10 0.75/5 3/18 1.5/9 0.75/4.5 3/20 1.5/10 0.75/5 3/18 0.75/5 3/20 1.5/10 0.75/5 | | Motor leads cross section | [mm²(AWG)] | 2 (14) | | Signal leads cross section | [mm²(AWG)] | 0.5 (20) | | Standard cable lengths (Ca1) (6) | [m (in)] | 0.3, 1.5, 5
(11.8, 59, 197) | | Cable diameter (Ca2) (6) | [mm (in)] | 7.5 (.295) | | Flying lead length (Ca3) (6) | [mm (in)] | 76 (3) | | Stripped lead length (Ca4) (6) | [mm (in)] | 6 (0.25) | | Actuator Weight [kg] |----------------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------| | Maximum Dynamic | Ordering Stroke (S) [mm] | Load (Fx) [kN (lbs)] | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 | 800 | 850 | 900 | 950 | 1000 | | 1.7 (382) | 6.5 | 6.7 | 7.0 | 7.2 | 7.5 | 7.7 | 8.0 | 8.2 | 8.5 | 8.7 | 9.0 | 9.2 | 9.5 | 9.7 | 10.0 | 10.2 | 10.5 | 10.7 | 11.0 | | 2.6 (585) | 6.5 | 6.7 | 7.0 | 7.2 | 7.5 | 7.7 | 8.0 | 8.2 | 8.5 | 8.7 | 9.0 | 9.2 | 9.5 | 9.7 | 10.0 | 10.2 | 11.6 | 11.9 | 12.2 | | 4.5 (1012) | 6.5 | 6.7 | 7.0 | 7.2 | 7.5 | 7.7 | 8.0 | 8.2 | 8.5 | 8.7 | 9.0 | 9.2 | 10.4 | 10.7 | 11.0 | 11.3 | 11.6 | 11.9 | 12.2 | | 6.8 (1592) | 6.5 | 6.7 | 7.0 | 7.2 | 7.5 | 7.7 | 8.0 | 8.2 | 8.5 | 9.5 | 9.8 | 10.1 | 10.4 | 10.7 | 11.0 | 11.3 | 11.6 | 11.9 | 12.2 | | 10 (2248) | 6.7 | 7.0 | 7.2 | 7.5 | 7.7 | 8.0 | 8.2 | 9.1 | 9.4 | 9.7 | 10.0 | 10.3 | 10.6 | 10.9 | 11.2 | 11.5 | 11.8 | 12.1 | 12.4 | | 16 (3584) | 8.1 | 8.3 | 8.5 | 8.7 | 8.9 | 9.1 | 9.3 | 9.5 | 9.7 | | | | | | | | | | | Conversion Factors: Millimeter to inch: 1 mm = 0.03937 in, kilogram to pound: 1 kg = 2.204623 lbs $^{^{\}rm 2}$ For units with the synchronization option, the speed is 25% lower at any load. ^{3 500} mm max. for 16 kN $^{^4\}mbox{For HDxx-B100}$ and HDxx-160 load, the duty cycle is 15%. ⁵ Do not use PWM voltage for speed control to avoid damaging the onboard electronics 8 See previous page for cable definitions ### How to Order the Electrak® HD This ordering key provides a quick overview of the product versions available. It is important to consider many application details when selecting a product, including the loads, speeds and control options required, as well as the product environment and necessary accessories. More information can be found at www.thomsonlinear.com/hd. | Ordering | Key | | | | | | | | |----------|-------|------|-----|---|---|---|---|---| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | HD12 | B026- | 0300 | LXX | 2 | M | M | S | D | #### 1. Model and input voltage HD12 = Electrak HD, 12 Vdc HD24 = Electrak HD, 24 Vdc HD48 = Electrak HD, 48 Vdc #### 2. Screw type, dynamic load capacity B017- = ball screw, 1.7 kN (382 lbf) B026- = ball screw, 2.6 kN (585 lbf) B045- = ball screw, 4.5 kN (1012 lbf) B068- = ball screw, 6.8 kN (1529 lbf) B100- = ball screw, 10 kN (2248 lbf) D100- = Dali Sciew, 10 kin (2240 ibi B160- = ball screw, 16 kN (3584 lbf) #### 3. Ordering stroke length (1)(2) $0050 = 50 \text{ mm}^{(3)}$ 0100 = 100 mm 0150 = 150 mm 0200 = 200 mm 0250 = 250 mm 0300 = 300 mm 0350 = 350 mm 0400 = 400 mm 0450 = 450 mm 0500 = 500 mm0550 = 550 mm 0600 = 600 mm 0650 = 650 mm 0700 = 700 mm $0750 = 750 \, \text{mm}$ 0800 = 800 mm 0850 = 850 mm 0900 = 900 mm 0950 = 950 mm 1000 = 1000 mm #### (1) Other stroke lengths available upon request. Please contact customer support. (2) 500 mm is the max. stroke length for 16 kN units. (3) 50 mm stroke units will have same retracted length and envelope size as a 100 mm unit. (4) Max. ordering stroke for the rear mounting flange type A is 300 mm. (5) Max. dynamic load capacity for the rear mounting flange type A is 10 kN. #### 4. Electrak Modular Control System options Options available for HD12 and HD24 only EXX = Electronic Monitoring Package only ELX = EXX + end-of-stroke indication output EXP = EXX + analog (potentiometer) position output EXD = EXX + digital position output ELP = ELX + analog (potentiometer) position output ELD = ELX + digital position output LPS = EXX + LXX + programmable limit switches + signal-follower Options available for HD12, HD24 and HD48 LXX = EXX + low-level signal motor switching LLX = EXX + LXX + end-of-stroke indication output LXP = EXX + LXX +analog (potentiometer) position output CNO = SAE J1939 CAN bus + open-loop speed control COO = CANopen CAN bus + open-loop speed control SYN = LXX + synchronization option #### 5. Cable length 1 = 0.3 m long cables 2 = 1.5 m long cables 3 = 5.0 m long cables #### 6. Rear adapter/mounting flange options A = rear mounting flange (4) (5) M = cross hole for 12 mm pin E = cross hole for ½ inch pin L = 01033 Hole for 72 High pill N = forked cross hole for 12 mm pin F = forked cross hole for ½ inch pin #### 7. Front adapter options A = metric M16 male
thread M = cross hole for 12 mm pin E = cross hole for ½ inch pin N = forked cross hole for 12 mm pin F =forked cross hole for $\frac{1}{2}$ inch pin P = metric M12 female thread G = inch 1/2-20 UNF-2B female thread #### 8. Adapter orientation S = standard M = 90 ° turned #### 9. Connection options D = flying leads # Performance Diagrams ¹ Curves valid for all units except those with the synchronization option, where the speed at any load is 25% lower than for those without. | Load vs. Life | | | | | | | | | | |---------------|-----------------------|--------|--|--|--|--|--|--|--| | Load (kN) | Load (kN) Stroke (mm) | | | | | | | | | | 1.7 | | 60,000 | | | | | | | | | 2.6 | | 40,000 | | | | | | | | | 4.5 | 300 | 20,000 | | | | | | | | | 6.8 | 300 | 10,000 | | | | | | | | | 10 | | 7,500 | | | | | | | | | 16 | | 4,000 | | | | | | | | The life of an actuator is dependent upon the application in which it is used. The table above provides estimates based on a 300 mm stroke that is fully loaded throughout the entire cycle. If you have any questions regarding the life of the Electrak HD in your specific application, please contact Thomson Customer Support. Screw Type and Dynamic Load Capacity ball screw, 1.7 kN (382 lbs) ball screw, 4.5 kN (1012 lbs) ball screw, 10 kN (2248 lbs) ball screw, 2.6 kN (585 lbs) ball screw, 6.8 kN (1529 lbs) ball screw, 16 kN (3584 lbs) Note! Curves were generated at an ambient temperature of 21°C (70°F). Different ambient temperature and individual actuator characteristics can produce slightly different values. # **Dimensions** | Rea | Rear and Front Adapter Dimensions [mm (in)] | | | | | | | | | | | | | |----------------|---|-------------|--------------|-------------|-------------|----|------------------------|-------------|-------------|-------------|-------------|---------------|-------------| | | | Rear | r Adapter Ty | ypes | | | | | | Front Ada | pter Types | | | | | М | Е | N | F | A (3) | | М | M E N F P G | | | | | А | | B1 | | 13.4 (| (0.53) | | 7.8 (0.31) | C1 | | | see tal | ole on next | page | | 16.5 (0.65) | | B2 | | 21.6 (| (0.85) | | - | C2 | 10.9 | (0.43) | 12.9 | (0.51) | 30.0 | (1.18) | 20.0 (0.79) | | В3 | | 25.4 | (1.0) | | 95.0 (3.70) | C3 | | | | see table o | n next page | | | | B4 | 12.2 (0.48) | 12.8 (0.51) | 12.2 (0.48) | 12.8 (0.51) | 6.6 (0.26) | C4 | 12.2 (0.48) | 12.8 (0.51) | 12.2 (0.48) | 12.8 (0.51) | M12 × 1.75 | 1/2-20 UNF-2B | M16×2 | | B5 | - | - | 8.2 (| 0.32) | 45.0 (1.77) | C5 | 8.2 (0.32) 19.0 (0.75) | | | | - | | | | C6 35.0 (1.38) | | | | | | | | | | | - | | | ⁽¹⁾ The input hole is covered with a plastic threaded plug. When removed, a 6 mm socket can be inserted and used as a crank. ⁽²⁾ All adapters shown in the standard orientation. ⁽³⁾ Rear mounting flange type A cannot be ordered with a higher maximum static load capacity than 10 kN or/and a maximum stroke of 300 mm. # **Dimensions** | Maximur | n Dy | namic Load | and Stroke Relation | onships | | | | | | | | | |-------------------------------------|---------|--|--------------------------|---------------------|------------|---------------------|---------------------|--|--|--|--|--| | Maximum | | l Length (Ltot), | Ordering Stroke (S) [mm] | | | | | | | | | | | Dynamic
Load (Fx) -
kN (lbs.) | (A) a | acted Length
nd Adapter
ensions [mm] | 100 – 500 | 550 — 600 | 950 — 1000 | | | | | | | | | | Ltot | | | A + B1 + C2 | | | | | | | | | | | Α | | S + 150.9 + B2 + C1 | | | | | | | | | | | 1.7 | C1 | Type M, E | | | 17.5 | | | | | | | | | (382) | | Type N, F | | | 26.5 | | | | | | | | | | | Type P, G | | | 23.9 | | | | | | | | | | C3 | | | | 30.2 | | | | | | | | | | Ltot | | | A + B | 1 + C2 | | A + B1 + C2 | | | | | | | | Α | | | S + 150.9 | + B2 + C1 | | S + 156.8 + B2 + C1 | | | | | | | 2.6 | C1 | Type M, E | | 17 | 7.5 | | 24.0 | | | | | | | (585) | | Type N, F | | 26 | 5.5 | | 27.0 | | | | | | | | | Type P, G | | 23 | 3.9 | | 24.9 | | | | | | | | C3 | | | | 0.2 | | 35.0 | | | | | | | | Ltot | | | A + B1 + C2 | | A + B | | | | | | | | | Α | | | S + 150.9 + B2 + C1 | | | S + 156.8 + B2 + C1 | | | | | | | 4.5 | C1 | Type M, E | | 17.5 | | 24 | | | | | | | | (2012) | | Type N, F | | 26.5 | 27.0 | | | | | | | | | | | Type P, G | | 23.9 | 24.9 | | | | | | | | | | C3 | | | 30.2 | 35.0 | | | | | | | | | | Ltot | | A + B | | | A + B1 + C2 | | | | | | | | | Α | | S + 150.9 | | | S + 156.8 + B2 + C1 | | | | | | | | 6.8 | C1 | Type M, E | 17 | | | 24.0 | | | | | | | | (1529) | | Type N, F | 26 | | 27.0 | | | | | | | | | | | Type P, G | 23 | | 24.9 | | | | | | | | | | C3 | | 30 | 1.2 | | 35.0 | | | | | | | | | Ltot | | A + B1 + C2 | | | 1 + C2 | | | | | | | | | Α | | S + 180.9 + B2 + C1 | S + 182 + B2 + C1 | | | | | | | | | | 10
(2248) | C1 | Type M, E | 17.5 | | | 4.0 | | | | | | | | (2240) | | Type N, F | 26.5 | | | 7.0 | | | | | | | | | 00 | Type P, G | 23.9 | | | 1.9 | | | | | | | | | C3 | | 30.2 | | | 5.0 | | | | | | | | | Ltot | | A + B1 + C2 | | | | | | | | | | | | A
C1 | Tune M. F | S + 182 + B2 + C1 | | | | | | | | | | | 16
(3584) | UI | Type M, E | 24.0 | | | - | | | | | | | | (0004) | | Type N, F | 27.0 | | | | | | | | | | | | C3 | Type P, G | 24.9 | | | | | | | | | | | | | ,, | 35.0 | | | | | | | | | | Electrak® HD electric linear actuators feature the Electrak Modular Control System, and each unit is shipped with the Electronic Monitoring Package. A generous offering of optional control and feedback features can be configured to fit most applications — all within the same design envelope. Details for each control option and its wiring are described on the following pages. Please contact customer support for more information at www.thomsonlinear.com/cs. Control option EXX contains all of the basic Electronic Monitoring Package features described on page 7, guaranteeing safe operation of the actuator and equipment. With control option EXX, the polarity of the motor voltage is switched by a customersupplied switch (switch, relay, etc.) to make the actuator extend or retract. The switch, power supply, wiring and all other components must be able to handle the motor current for the actuator model and load being used, as well as the inrush current (up to three times the max. continuous current for the max. load being used for up to 150 milliseconds). | Control Option Type ELX | | | | | | | | | | |---|----------|------------------------|--|--|--|--|--|--|--| | Actuator supply voltage
HD12
HD24
HD48 | [Vdc] | 9 - 16
18 - 32
- | | | | | | | | | Actuator current draw | [A] | see page 19 | | | | | | | | | Output contact type | | potential free | | | | | | | | | Limit switch max. switch voltage | [Vdc/ac] | 30/120 | | | | | | | | | Limit switch max. switch current | [mA] | 100 | | | | | | | | - F Fuse - S1 Double pole double throw switch Control option ELX works as option EXX but also has two outputs that indicate when the extension tube is in its fully extended or retracted position. | Control Option Type EXP | | | | |---|----------|-----------------------------|--| | Actuator supply voltage
HD12
HD24
HD48 | [Vdc] | 9 - 16
18 - 32
- | | | Actuator current draw | [A] | see page 19 | | | Potentiometer type | | wirewound | | | Potentiometer max. input voltage | [Vdc] | 32 | | | Potentiometer max. power | [W] | 1 | | | Potentiometer linearity | [%] | ± 0.25 | | | Potentiometer output resolution
50 - 100 mm stroke
150 - 250 mm stroke
300 - 500 mm stroke
550 - 1000 mm stroke | [ohm/mm] | 65.6
32.8
19.7
9.8 | | - F Fuse - S1 Double pole double throw switch Control option EXP works as option EXX but also has an analog (potentiometer) output that will provide feedback on the extension tube position. | Control Option Type EXD | | | | |--|------------|--|--| | Actuator supply voltage
HD12
HD24
HD48 | [Vdc] | 9 - 16
18 - 32
- | | | Actuator current draw | [A] | see page 19 | | | Encoder type | | hall effect | | | Encoder input voltage | [Vdc] | 4 - 24 | | | Encoder output voltage levels low (logical zero), typical / max. | [Vdc] | 0.1/ 0.25 | | | Encoder resolution HDxx-B017 HDxx-B026 HDxx-B045 HDxx-B068 HDxx-B100 HDxx-B160 | [mm/pulse] | 0.28
0.15
0.09
0.07
0.04
0.03 | | - F Fuse - S1 Double pole double throw switch Control option EXD works as option EXX but also has a single-channel encoder output that will provide feedback on the extension tube position. | Control Option Type ELF |) | | |---|----------|-----------------------------| | Actuator supply voltage
HD12
HD24
HD48 | [Vdc] | 9 - 16
18 - 32
- | | Actuator current draw | [A] | see page 19 | | Output contact type | | potential free | | Limit switch max. switch voltage | [Vdc/ac] | 30/120 | | Limit switch max. switch current | [mA] | 100 | | Potentiometer type | | wirewound | | Potentiometer max. input voltage | [Vdc] | 32 | | Potentiometer max. power | [W] | 1 | | Potentiometer linearity | [%] | ± 0.25 | | Potentiometer output resolution
50 - 100 mm stroke
150 - 250 mm stroke
300 - 500 mm stroke
550 - 1000 mm stroke | [ohm/mm] | 65.6
32.8
19.7
9.8 | - F Fuse - S1 Double pole double throw switch Control option ELP works as option EXP but also has two outputs that indicate when the extension tube is in its fully extended or retracted position. | Control Option Type ELD | | | | |---|--|--|--| | Actuator
supply voltage [Vd
HD12
HD24
HD48 | 9 - 16
18 - 32
- | | | | Actuator current draw [/ | A] see page 19 | | | | Output contact type | potential free | | | | Limit switch max. switch voltage [Vdc/a | c] 30/120 | | | | Limit switch max. switch current [m/ | A] 100 | | | | Encoder type | hall effect | | | | Encoder input voltage [Vd | 4 - 24 | | | | Encoder output voltage levels [Vd low (logical zero), typical / max. | 0.1/ 0.25 | | | | Encoder resolution [mm/puls HDxx-B017 HDxx-B026 HDxx-B045 HDxx-B068 HDxx-B100 HDxx-B160 | 0.28
0.15
0.09
0.07
0.04
0.03 | | | - F Fuse - S1 Double pole double throw switch Control option ELD works as option EXD but also has two outputs that indicate when the extension tube is in its fully extended or retracted position. | Control Option Type LXX | | | |--|--------------------------------------|----| | Actuator supply voltage HD12 HD24 HD48 | /dc]
9 - 16
18 - 33
36 - 64 | 2 | | Actuator current draw | [A] see page | 19 | | Extend / retract input voltage [** HD12(24) HD48 | /dc]
9 - 32
12 - 6 | | | Extend / retract input current [| mA] 6 - 22 | | - F Fuse - S1 Extend switch - S2 Retract switch Control option LXX has all the basic Electronic Monitoring Package features included in control option EXX, but the polarity of the motor voltage is switched by the onboard electronics instead. The customer-supplied switches used to command the actuator to extend or retract only need to handle low-level signals. However, the power supply and wiring that supply the actuator must be able to handle the motor current for the actuator model and load being used, as well as the inrush current (up to one and a half times the max. continuous current for the max. load being used for up to 150 milliseconds). | Control Option Type LLX | | | |--|----------|------------------------------| | Actuator supply voltage
HD12
HD24
HD48 | [Vdc] | 9 - 16
18 - 32
36 - 64 | | Actuator current draw | [A] | see page 19 | | Output contact type | | potential free | | Limit switch max. switch voltage | [Vdc/ac] | 30/120 | | Limit switch max. switch current | [mA] | 100 | | Extend / retract input voltage
HD12(24)
HD48 | [Vdc] | 9 - 32
12 - 64 | | Extend / retract input current | [mA] | 6 - 22 | - F Fuse - S1 Extend switch - S2 Retract switch Control option LLX works as option LXX but also has two outputs that indicate when the extension tube is in its fully extended or retracted position. | Control Option Type LXP | | | |---|----------|------------------------------| | Actuator supply voltage
HD12
HD24
HD48 | [Vdc] | 9 - 16
18 - 32
36 - 64 | | Actuator current draw | [A] | see page 19 | | Potentiometer type | | wirewound | | Potentiometer max. input voltage | [Vdc] | 32 | | Potentiometer max. power | [W] | 1 | | Potentiometer linearity | [%] | ± 0.25 | | Potentiometer output resolution
50 - 100 mm stroke
150 - 250 mm stroke
300 - 500 mm stroke
550 - 1000 mm stroke | [ohm/mm] | 65.6
32.8
19.7
9.8 | | Extend / retract input voltage
HD12(24)
HD48 | [Vdc] | 9 - 32
12 - 64 | | Extend / retract input current | [mA] | 6 - 22 | - F Fuse - S1 Extend switch - S2 Retract switch Control option LXP works as option LXX but also has an analog (potentiometer) output that will provide feedback on the extension tube position. | Control Option Type LPS | | | |--|----------|------------------------| | Actuator supply voltage
HD12
HD24
HD48 | [Vdc] | 9 - 16
18 - 32
- | | Actuator current draw | [A] | see page 19 | | Signal-follower input voltage | [Vdc] | 0.5 - 4.5 | | Signal-follower max. output current | [A] | 0.8 | | Signal-follower movement | [mm/Vdc] | stroke* [mm] / 4 | | Signal-follower repeatability | [± mm] | 0.1 | | Programming inputs voltage
HD12(24)
HD48 | [Vdc] | 9 - 32
- | | Extend / retract input voltage
HD12(24)
HD48 | [Vdc] | 9 - 32
- | | Extend / retract input current | [mA] | 6 - 22 | * ordering stroke of the actuator or the stroke between any set programmable extend or retract limits. - S1 Extend switch S2 Retract switch - Control option LPS works as option LXX but also has programmable mid-stroke software extend and retract limits as well as a signal-follower input that allows the extension tube position to be controlled from a potentiometer or other voltage control. Both functions can be used at the same time. | Control Option Type SYN | | | | |--|-------|------------------------------|--| | Actuator supply voltage
HD12
HD24
HD48 | [Vdc] | 9 - 16
18 - 32
36 - 64 | | | Actuator current draw | [A] | see page 19 | | | Extend / retract input voltage
HD12(24)
HD48 | [Vdc] | 9 - 32
12 - 64 | | | Extend / retract input current | [mA] | 6 - 22 | | | Number of synchronized actuators | | 2+ | | | Max. actuator speed difference | [%] | 25 | | Control option SYN works as option LXX but also has a synchronization feature, allowing two or more actuators having the SYN option to run in integrated motion. When using the low-level extend and retract inputs on the master actuator, the slave(s) will follow. If there is a need to run an actuator individually, it is possible to put it into an override state by closing a switch (S3) connected to the red lead as shown in the wiring diagram. #### Important desig notes: - Ensure that supply voltage to each actuator is within ±1.0 V. - Uneven loading between the actuators is not recommended, but the synchronization option can withstand its effects up to a 25% speed loss. - For units with the synchronization option, the speed at a given load is 25% lower than for those without. This is true irrespective of the unit being in synchronization or override mode, or simply run individually. - If one actuator encounters an overload condition, it will trip the overload protection and send a signal to each actuator on the network to stop. The units can be immediately reversed (unless they bind up the system), or they can continue in the same direction after a power reset. - If power is lost at any time to any actuator, the actuators still powered will continue their last commanded move until told to stop, either by an individual current overload trip, or a stop signal sent from the master actuator. - If communication is lost (i.e. brown/blue wires cut), the slaves will continue their last commanded move until they reach end of stroke or trip current overload. The master will continue its last commanded move unless commanded to stop with the switching leads, reaching end of stroke, or tripping current overload. - After a large number of mid-stroke movements, the time difference between each unit receiving a signal to move (master vs. slave) will add to small variances in when the units start and stop. Since they are designed to run at the same speed, these small differences amount to a variance of position over time – even when load is applied. To address this concern, Thomson suggests running the units either to a fully extended or fully retracted position each cycle to re-align the units with each other to take out these added variances. - In order to give the master and slave(s) enough time to communicate there must be at least 250 ms between each start and stop command. | Control Option Type CNO and COO | | | |---|-------|------------------------------| | Actuator supply voltage
HD12
HD24
HD48 | [Vdc] | 9 - 16
18 - 32
36 - 64 | | Actuator current draw | [A] | see page 19 | | Command data includes: | | | | Feedback data includes: • position • speed • current • other diagnostic information | | | | Extend / retract input voltage
HD12(24)
HD48 | [Vdc] | 9 - 32
12 - 64 | | Extend / retract input current | [mA] | 6 - 22 | Address select 1, 2 and 3 pins can be used as a binary encoded decimal (BCD) adder to the default address. This can be used when multiple CAN bus actuators are located on a single bus. The actuator can be manually forced to extend or retract by using the inputs on white and black wires. When the manual control inputs are used, CAN bus control messages are ignored, but the unit will still provide CAN bus feedback messages. When the inputs are left floating, CAN bus functionality for control messages is restored. - F Fuse - S1 Manual extension switch (optional) - S2 Manual retraction switch (optional) Control option CNO has a SAE J1939 CAN bus control interface, COO has a CANopen control interface that control and monitor the actuator. Extend and retract commands are sent via CAN messages on the CAN low and CAN high pins. ### Accessories | Limit Switches for Cover Tube Mounting | | | | |--|--------------------|-----------------------------|-----------------| | Sensor type | | solid state | reed switch | | Contact type | | normally open (N.O.) | | | Output type | | PNP | contact | | Voltage | [VDC/AC] | 10 - 30 / — | 5 -120 / 5 -120 | | Max. current | [mA] | 100 | | | Hysteresis | [mm] | 1.5 | 1.0 | | Operating temperature | [°C] | - 25 to + 85 | - 25 to + 70 | | Lead cross section | [mm ²] | 3 × 0.14 | 2 × 0.14 | | Length (L) | [mm] | 25.3 | 30.5 | | Height (H) | [mm] | 5.1 | 5.7 | | Protection class | | IP69K | IP67 | | LED indicator | | yes | | | Connection | | 2 m cable with flying leads | | | p/n | | 840-9131 | 840-9132 | #### **Dimensions** [mm] #### Connection Solid state Reed switch The limit switches are mounted in the cover tube slots and will be switched by a magnet mounted inside of the actuator on the extension tube. | Rod End Front Adapter | | |
---------------------------|---------------------------------------|----------------------------------| | Туре | metric | inch | | Material | Cadmium-p | olated steel | | Dimensions
A
B
C | 12.0 ± 0.1 mm
14.3 ± 0.1 mm
M12 | 0.5 in
0.625 in
1/2-20 UNF | | p/n | 756-9021 | 756-9007 | #### **Dimensions** [mm (in)] The rod end front adapter comes in a metric or inch version. The metric adapter can be mounted to the front of the extension tube if the actuator is equipped with the metric female thread front adapter option (type P), while the inch adapter requires the inch female thread option (type G). | Wire Harness Kits | | | |-------------------|---|--| | Part Number | Description | | | 954-9364 | 0.3 m Power Only (EXX) | | | 954-9365 | 1.5 m Power Only (EXX) | | | 954-9366 | 5.0 m Power Only (EXX) | | | 954-9367 | 0.3 m Power and 8-Wire Signal (ELX, ELP, ELD, LXX, LLX, LXP, CNO, COO, SYN) | | | 954-9368 | 1.5 m Power and 8-Wire Signal (ELX, ELP, ELD, LXX, LLX, LXP, CNO, COO, SYN) | | | 954-9369 | 5.0 m Power and 8-Wire Signal (ELX, ELP, ELD, LXX, LLX, LXP, CNO, COO, SYN) | | | 954-9370 | 0.3 m Power and 3-Wire Signal (EXP, EXD) | | | 954-9371 | 1.5 m Power and 3-Wire Signal (EXP, EXD) | | | 954-9372 | 5.0 m Power and 3-Wire Signal (EXP, EXD) | | ### Online Resources Thomson offers a wide variety of online application, selection and training tools to help you in the selection process. An experienced team of application engineers is also available to help size and select an Electrak® HD model to best fit your application needs. To explore additional technical resources and options, contact Thomson customer support at www.thomsonlinear.com/hd. #### **Electrak HD Microsite** Get additional information and learn more about the electromechanical advantage on our microsite. www.thomsonlinear.com/hd #### **Product Selector** The product selector will walk you through the selection process. https://www.thomsonlinear.com/en/products/linear-actuators-products #### **Interactive 3D CAD Models** Download free interactive 3D CAD models in the most common CAD formats. www.thomsonlinear. com/micro/electrakhd_eng/3d-model-downloads. html ### **Smart Actuation** As the industrial world becomes increasingly connected, the designer's need for intelligent components that can communicate with each other and operate without the need for manual interaction is growing. Thomson is meeting this demand and helping to usher in a new generation of "smart" actuators where Electrak HD is one of them. Learn more about smart actuation at www.thomsonlinear.com/smart. #### **Smart Actuation Benefits** - Increased efficiency and productivity. - Enhanced diagnostic capabilities and controllability. - · Fewer components and less cabling. - Minimized complexity and easier installation. - Reduced hardware and software costs. - Decreased machine development time and weight. - Improved machine functionality and performance. #### **Seamless Interconnectivity** The smart factory incorporates a number of interconnected machines and devices that take advantage of advanced actuation features to enable a fluid, synchronized and safe manufacturing process. These can include fork lifts, assembly/control stations and fixtures, automated guided vehicles, and components that can be easily and quickly adjusted on the fly. ### Frequently Asked Questions Here are answers to common questions we receive. If you need more information, please contact customer support at www.thomsonlinear.com/cs. #### What is the typical life of an actuator? Life is a function of load and stroke length. Please contact customer support for more information. # What are the most common reasons for premature actuator failure? Side load due to incorrect mounting, shock loading, exceeding the duty cycle and incorrect wiring are the most prominent causes for premature failure. #### What are IP ratings? IP (International Protection Marking) ratings are commonly referenced standards that classify electrical equipment using standard tests to determine resistance to ingress of solid objects (first digit) and liquids (second digit). See the IP Ratings table below. # Is Electrak HD suitable for tough environments such as washdown or extreme temperatures? Yes. Electrak HD actuators are designed for washdown and have passed 500 hours of salt spray tests. They can operate in temperatures ranging from -40°C (-40°F) to +85°C (185°F). #### How is the duty cycle determined? The duty cycle = on time / on time + off time. For example, if Electrak HD is powered for 15 seconds and then off for 45 seconds, the duty cycle for that minute would be 25%. All models are rated to 25% at full load, and an ambient temperature of 25°C (77°F). If load and/or ambient temperature are lower, then the duty cycle can exceed 25%. At higher temperatures, the duty cycle will be lower. | IP Rating (EN60529) | | | |---------------------|--|--| | Code | First Digit Definition | Second Digit Definition | | 0 | No protection. | No protection. | | 1 | Protected against solid objects over 50 mm. | Protected against vertically falling drops of water. | | 2 | Protected against solid objects over 12.5 mm. | Protected against vertically falling drops of water, if the case is disposed up to 15° from vertical | | 3 | Protected against solid objects over 2.5 mm. | Protected against vertically falling drops of water, if the case is disposed up to 60° from vertical | | 4 | Protected against solid objects over 1 mm. | Protected against splash water from any direction. | | 5 | Limited protection against dust ingress (no harmful deposits). | Protected against low-pressure water jets from any direction. Limited ingress permitted. | | 6 | Totally dust protected. | Protected against high-pressure water jets from any direction. Limited ingress permitted. | | 7 | - | Protected against short periods of immersion in water. | | 8 | _ | Protected against long, durable periods of immersion in water. | | 9K | - | Protected against close-range, high-pressure and high-temperature spray downs. | #### Is Electrak HD maintenance free? Yes. Electrak HD never requires lubrication, maintenance or adjustment for wear. # Is it possible for a load to back-drive the extension tube? No. The ball screw models incorporate a static load holding brake. # What is the difference between a tension and a compression load? A tension load tries to stretch the actuator, while a compression load tries to compress it. With bi-directional loads, the end play of the actuator extension tube may need to be taken into consideration when using the actuator for positioning tasks. #### Can Electrak HD be side loaded? No. A proper design of the application should eliminate any side loads. # What is the range of input voltage an Electrak HD can operate with? A 12 Vdc model will accept 9 – 16 Vdc, a 24 Vdc model 18 – 32 Vdc and a 48 Vdc model 36 – 64 Vdc. Outside of these limits, the Electronic Monitoring Package will prevent the actuator from operating. # Can the speed of an Electrak HD be adjusted by changing the input voltage? No. When using direct current from a battery or full wave rectifier that are within the acceptable voltage limits, the Electronic Monitoring Package will keep the actuator at the correct speed for the load in question. Outside of the limits the actuator will be switched off. If utilizing PWM (Pulse Width Modulation) controls or drives, the actuator PCB can be damaged and is therefore not recommended. #### What is the inrush current? The inrush current is a short current peak that appears at the start of an actuator as the motor tries to get the load moving. Typically, the inrush current will last between 75 to 150 milliseconds and can be up to three times higher (on a low-level switched actuator 1.5 times higher) than the current for the actuator and load. Batteries have no problem delivering the inrush current, but if using an AC-powered power supply, it is important to size it to handle the inrush current. # What special mounting considerations does the Electrak HD require? There is no restraining torque that needs to be considered as Electrak HD is internally restrained. However, the actuator must be mounted so that there are no side loads acting on the extension tube. It is also important that the manual override input is accessible after the actuator is mounted and that connectors and cables are placed so that they are not damaged during operation. #### What is the maximum extension speed? The extension speed of an Electrak HD actuator is a function of the load. To determine the speed at a certain load, consult the load vs. speed charts on page 21. If a higher linear travel speed is required, a simple mechanical linkage can be employed.